AP Physics 1 Equations and Facts 2020

Kinematics
$\mathrm{v}_{\mathrm{f}}=\mathrm{v}_{\mathrm{i}}+\mathrm{at}$
$\Delta \mathrm{x}=\mathrm{v}_{\mathrm{i}} \mathrm{t}+1 / 2 \mathrm{at}^{2}$
$\mathrm{v}_{\mathrm{f}} \mathrm{t}^{2}=\mathrm{v}_{\mathrm{i}}{ }^{2}+2 \mathrm{a} \Delta \mathrm{x}$
$\Delta \mathrm{x}=1 / 2\left(\mathrm{v}_{\mathrm{i}}+\mathrm{v}_{\mathrm{f}}\right) \mathrm{t}$
Constant velocity:
$\Delta \mathrm{x}=\mathrm{v}_{\mathrm{avg}} \mathrm{t}$

Circular Motion and Gravitation

$a_{c}=\frac{v^{2}}{r}$
$F_{c}=\frac{m v^{2}}{r}$
$v=\frac{2 \pi r}{T}$
$F_{g}=\frac{G m_{1} m_{2}}{r^{2}}$
$g=\frac{G m_{2}}{r^{2}}$
m_{1} is orbiting mass

SHM

$T_{p}=2 \pi \sqrt{\frac{l}{g}}$
$T_{S}=2 \pi \sqrt{\frac{m}{k}}$
$\mathrm{T}=\frac{1}{f}(f$ is frequency $)$
$\omega=\frac{2 \pi}{T}=2 \pi f$
$\mathrm{x}=\mathrm{A} \cos (\omega \mathrm{t})$
$\mathrm{X}_{\text {max }}=\mathrm{A}$
$\mathrm{v}_{\text {max }}=\mathrm{A} \omega$
$\mathrm{a}_{\text {max }}=\mathrm{A} \omega^{2}$
$\mathrm{a}_{\text {max }}=\frac{\mathrm{F}_{\text {max }}}{\mathrm{m}}=\frac{\mathrm{kA}}{\mathrm{m}}$
$\mathrm{E}_{\text {total }}=\mathrm{K}+\mathrm{Us}$

Forces weight: $\mathrm{F}_{\mathrm{g}}=\mathrm{mg}$
Newton's $2^{\text {nd }}$ Law: $\Sigma \mathrm{F}=$ ma
Hooke's Law: $\mathrm{F}_{\text {spring }}=\mathrm{k}|\mathrm{x}|$
$\mathrm{F}_{\mathrm{k}}=\mu_{\mathrm{k}} \mathrm{F}_{\mathrm{n}} \quad \mathrm{F}_{\mathrm{s}}=\mu_{\mathrm{s}} \mathrm{F}_{\mathrm{n}}$
Inclined Plane:
$\mathrm{F}_{\mathrm{g} \|}=\mathrm{mg} \sin \theta \quad \mathrm{Fg}_{\mathrm{g}}=\mathrm{mg} \cos \theta$
\perp

Vector Components

$$
\mathrm{v}_{\mathrm{x}}=\mathrm{v} \cos \theta \quad \mathrm{v}_{\mathrm{y}}=\mathrm{v} \sin \theta
$$

projectile:

$$
t=\sqrt{\frac{2 \Delta y}{a}}, \Delta \mathrm{x}=\mathrm{v}_{\mathrm{x}} \mathrm{t}
$$

Momentum and Impulse

$\mathrm{p}=\mathrm{mv}$
$\Delta \mathrm{p}=\mathrm{F} \Delta \mathrm{t}$ or Ft
$\mathrm{p}_{\mathrm{i}}+\Delta \mathrm{p}=\mathrm{p}_{\mathrm{f}}$
$\mathrm{m}_{1} \mathrm{v}_{1 i}+\mathrm{m}_{2} \mathrm{v}_{2 i}=\mathrm{m}_{1} \mathrm{v}_{1 f}+\mathrm{m}_{2} \mathrm{v}_{2 f} \quad$ if no external forces applied perfectly inelastic collision: $\mathrm{m}_{1} \mathrm{v}_{1 i}+\mathrm{m}_{2} \mathrm{v}_{2 i}=\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{v}_{f}$ perfectly elastic collision: no KE loss

Work and Energy \quad W $=\mathrm{Fd} \cos \theta \quad \mathrm{Us}=1 / 2 \mathrm{kx}^{2}$

$\mathrm{K}_{\mathrm{T}}=1 / 2 \mathrm{mv}^{2}$

$$
K_{R}=1 / 2 I \omega^{2}
$$

$$
\mathrm{Ug}=\mathrm{mgh} \text { or } \Delta \mathrm{Ug}=\mathrm{mg} \Delta \mathrm{y}
$$

$$
\text { COE: } \quad \mathrm{K}_{\mathrm{i}}+\mathrm{Ug}_{\mathrm{i}}+\mathrm{Us}_{\mathrm{i}}+\mathrm{W}=\mathrm{K}_{\mathrm{f}}+\mathrm{Ug}_{\mathrm{f}}+\mathrm{Us}_{\mathrm{f}} \quad \text { or } \Delta \mathrm{E}=\mathrm{W}
$$

Rotation

$$
\mathrm{K}_{\mathrm{R}}=1 / 2 \mathrm{I} \omega^{2}
$$

Conversions: $\mathrm{v}=\omega \mathrm{r}$ (ω in rad/s) $\quad \mathrm{a}=\alpha \mathrm{r}$
Kinematics: $\quad \Delta \theta=\omega_{\mathrm{i}} \mathrm{t}+1 / 2 \alpha t^{2} \quad \omega_{\mathrm{f}}=\omega_{\mathrm{i}}+\alpha \mathrm{t}$
Newton's $2^{\text {nd }}$ Law: $\alpha=\frac{\Sigma \tau}{\mathrm{I}} \quad \Sigma \tau=\tau_{\mathrm{CCW}}-\tau_{\mathrm{CW}}=\mathrm{I} \alpha$
$\tau=r_{\perp} \mathrm{F}=\mathrm{rF} \sin (\theta) \quad \mathrm{r}$ must have a component perpendicular to F torque in equilibrium: $\Sigma \tau=\tau_{\mathrm{CCW}}-\tau_{\mathrm{CW}}=0$ (CCW: positive direction)
angular momentum $\mathrm{L}=\mathrm{I} \omega \quad \Delta \mathrm{L}=\tau \Delta \mathrm{t} \quad$ or $\tau \mathrm{t}$
conservation of angular momentum (if no external τ): $\mathrm{I}_{1} \omega_{1}=\mathrm{I}_{2} \omega_{2}$
$\mathrm{L}=\mathrm{mvr}$ for point mass moving in reference to axis (a ball striking a rod) rotational inertia for a point mass: $\mathrm{I}=\mathrm{mr}^{2}$ several: $\mathrm{I}=\Sigma \mathrm{mr}^{2}$ solid objects have less rotational inertia than hollow objects

Graphs

v-t graph area: displacement	v-t graph slope: acceleration
F-d graph area: Work	F-x graph slope: spring constant
F-t graph area: impulse $(\Delta$ p)	p-t graph slope: force

Key Concepts Flow Chart

1. Does the question involve a transfer of energy from potential to kinetic energy within the system? Is there a loss of mechanical energy to work? If YES to either one, use Conservation of Energy.

No loss of mechanical energy to work: $\mathrm{K}_{\mathrm{Ti}}+\mathrm{K}_{\mathrm{Ri}}+\mathrm{Ug}_{\mathrm{i}}+\mathrm{Us}_{\mathrm{i}}=\mathrm{K}_{\mathrm{Tf}}+\mathrm{K}_{\mathrm{Rf}}+\mathrm{Ug}_{\mathrm{f}}+\mathrm{Us}_{\mathrm{f}}$
Example: a planet in orbit around a star
Some loss of mechanical energy to work: $\mathrm{E}_{\mathrm{i}}+\mathrm{W}=\mathrm{E}_{\mathrm{f}}$ or $\Delta \mathrm{E}=\mathrm{W}$
2. Does the question involve a collision, and is the system both objects?

If it is a rotating system, does it contain 2 objects such as a bug and a disk or a planet and a star?
$\mathrm{m}_{1} \mathrm{v}_{1 i}+\mathrm{m}_{2} \mathrm{v}_{2 i}=\mathrm{m}_{1} \mathrm{v}_{1 f}+\mathrm{m}_{2} \mathrm{v}_{2 f} \quad 0=\mathrm{m}_{1} \mathrm{v}_{1 f}+\mathrm{m}_{2} \mathrm{v}_{2 f}$ for objects pushing off each other
$\mathrm{m}_{1} \mathrm{v}_{1 i}+\mathrm{m}_{2} \mathrm{v}_{2 i}=\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{v}_{f}$
for a planet-star system experiencing no external torque: $\mathrm{I}_{1} \omega_{1}=\mathrm{I}_{2} \omega_{2}$
3. Does the question involve a collision and the system is one object that experiences an external force? If it is a rotating system, does it contain one object such as a bug on a disk?

$$
\mathrm{p}_{\mathrm{i}+}+\Delta \mathrm{p}=\mathrm{p}_{\mathrm{f}} \quad \Delta \mathrm{p}=\mathrm{F} \Delta \mathrm{t} \text { or } \mathrm{Ft} \quad \mathrm{~L}_{\mathrm{i}}+\Delta \mathrm{L}=\mathrm{L}_{\mathrm{f}} \quad \Delta \mathrm{~L}=\tau \Delta \mathrm{t} \quad \text { or } \tau \mathrm{t}
$$

if cart A loses momentum, cart B gains if a bug gains momentum, the disk momentum. Cart B exerts a negative force on Cart A.
loses it. The bug is exerting a negative torque on the disk.
4. Is there a net force or a net torque exerted on a system?
$\mathrm{a}=\Sigma \mathrm{F} / \mathrm{m} \quad$ more mass, less acceleration $\quad \alpha=\frac{\Sigma \tau}{\mathrm{I}}$ more rot. inertia, less acceleration
5. Is the net force due to gravitation?
$F_{g}=\frac{G m_{1} m_{2}}{r^{2}} \quad$ and $\quad F_{c}=\frac{m v^{2}}{r}$
6. Is the net force causing circular motion but it isn't a gravitation problem?

If the net force is centripetal, $\quad \Sigma \mathrm{F}=$ inward force - outward force.
Example: a ball traveling in a vertical circle (at the bottom, T is inward and mg is outward)
Example: a car going over a hill (mg is inward, Fn is outward)
Example: a pilot doing a vertical loop (mg and Fn are both inward).
Diagram for determining the height of an object on a string if the angle and length of string are known.

